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strategy.
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I. INTRODUCTION

Over the last few decades, the concepts and techniques of
statistical physics have proven valuable in tackling multivari-
ate problems in quite different fields of knowledge including
traffic [1], neural networks[2], optimization[3], the immune
system[4] and the stockmarket[5,6]. On the other hand, the
constructive role of fluctuations in nonequilibrium statistical
mechanics has been illustrated in various phenomena includ-
ing noise-induced phase transitions, stochastic resonance,
Brownian motors and resonant activation[7]. Some of these
phenomena have been translated outside of their original
physical context. One of them is the Parrondo paradox, stat-
ing that the alternation—random or periodic—between fair
games needs no longer be a fair game[8]. In this paper, we
would like to investigate a multiplayer version of the Par-
rondo paradox. The interest in this problem is first that one
observes counterintuitive phenomena reminiscent of those
found in economy and game theory, like the fact that Nash
equilibria need not be Pareto optimal[9] or that greedy al-
gorithms can lead to suboptimal solutions[10]. Second,
those phenomena are now observed in models that have a
physical realization(a continuous realization corresponds to
a set ofN Brownian particles moving in a periodic asymmet-
ric potential that can be flashed on and off at will[11]). Third
and more importantly, the origin of this behavior is of a
dynamic and more precisely stochastic nature, in contrast to
the static equations in economy and game theory. The final
reason is the general interest in exactly solvable models.
Based on the experience in statistical physics, one can expect
that the exact analysis of a stochasticN-player model is usu-
ally out of the question for a generalN value. Indeed, for the
original multiplayer Parrondo paradox, results are only
known in the limiting cases of a few(N small) or of an
infinite number of playerssN→`d [12] or by perturbation
analysis around the latter state(Gaussian limit) [13]. It has
even been suggested that the problem of identifying the op-
timal strategy in theN-player game belongs to the class of
NP-complete problems[14]. Our main contribution is to
show that theN-player version of a recently introduced
simplification—the primary Parrondo paradox[15]—can be
analyzed in full analytic detail for any value ofN. Further-
more we will show that, for this particular version of the
Parrondo paradox, the problem of finding the optimal strat-
egy is polynomial rather than exponential in the number of
players.

II. PRIMARY PARRONDO PARADOX

In the primary Parrondo paradox, a player can choose
between two fair games—gameA and gameB—for which
the rules are(wins or losses are changes of capital with +1
and −1, respectively) the following.

(i) Game A: With probability 1/4 the player wins or
loses, and with probability 1/2 his capital does not change.

(ii ) GameB: The rules for gameB depend on the capital
of the player modulo 2. When the capital is even, the player
has a probability 4/9 to win, 2/9 to lose and 1/3 to neither
win nor lose. When his capital is odd, the player has a prob-
ability 1/9 to win, 2/9 to lose and 2/3 to neither win nor
lose.

The transition probabilities have been chosen in accor-
dance with the fact that the games, played separately, are fair.
More importantly, the transition rates are such that the result-
ing stochastic dynamics is superstable: the steady-state prob-
ability distribution to have an even capital—namely, 1/2 for
gameA and 1/3 for gameB—is reached after playing each
of these games just once. In other words, the transition ma-
trices associated with the Markovian dynamics for each
game are idempotent operators that project on the steady
distribution in one iteration. This simplification not only
leads to a clear and swift discussion of the original Parrondo
paradox that appears when switching between the games(see
[15] for more details), but it also allows, as we proceed to
show below, to give a full and detailed analytic discussion of
the much more involved collective version of the game, in-
cluding the identification of the optimal strategy.

III. PRIMARY PARRONDO PARADOX WITH STRATEGY

The collective version of the game is defined as follows.
A set of N players is allowed to choose, after each game,
which game will be played next. Once this choice is made,
all players will play the selected game, but independently of
each other. The natural question arises as to which strategy
should be followed to maximize the gain of the players.
Since the statistics of the gains or losses only depends on the
capital modulo 2 of each player and all players are equiva-
lent, the relevant information is contained in the number of
players i P h0,… ,Nj with an even capital. There areN+1
different such configurations. Hence the state of the players
after the nth game will be described by the probabilities
Pisnd to find the players in these configurationsi. We can
now define the most general state-dependent strategy by in-
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troducing the probabilitiessi to choose gameA (and 1−si to
choose gameB) when being in statei. Introducing wAs j
→ id andwBs j → id as the transition probability from configu-
ration j to i when playing gameA or gameB, respectively,
the (discrete) time evolution ofPjsnd is given by the follow-
ing master equation:

Pisn + 1d = o
j=0

N

fsjwAs j → id + s1 − sjdwBs j → idgPjsnd.

s1d

The transition probabilitieswAs j → id andwBs j → id are found
as follows. As mentioned before, the probability for a player
to have an even capital is 1/2 after playing gameA and 1/3
after gameB. In view of the fact that the games are played
independently, the probability to havei of the players in this
state is given by a binomial distribution:

wAs j → id ; wAsid = SN

i
DS1

2
DN

,

wBs j → id ; wBsid = SN

i
DS1

3
DiS2

3
DN−i

. s2d

As a result of the special choice of the transition probabilities
of the individual games, the transition rates for the collective
game appearing in Eq.(1) factorize(such a process is called
a Kangaroo process in[16]). An immediate consequence is
that the steady-state solutionPi

st= limn→`Pisnd can be ob-
tained explicitly:

Pi
st = wAsidksl + wBsids1 − ksld, s3d

with ksl=o j=0
N sjPj

st being the steady-state(average) probabil-
ity that the next game to be played is gameA. Note that the
normalization of thePi

st follows immediately from the nor-
malization ofwAsid and wBsid; cf. Eq. (3). The value ofksl
follows from self-consistency: by multiplying Eq.(3) with si
and summation overi, one finds

ksl =
sB

1 − sA + sB
, s4d

with

sA = o
i=0

N

siwAsid, sB = o
i=0

N

siwBsid, s5d

the average conditional probability to choose gameA when
the previous game wasA or B, respectively. To complete the
picture, we note that the expected gain after playing gameA
or gameB when being in configurationi is, respectively,
given by

expected gain for gameA = 0,

expected gain for gameB =
1

3N
Si −

N

3
D , s6d

where we have divided by the number of players(gain per
player). We conclude that the steady-state average gain for
the strategy games is given by

Gshsijd =
1

3N
o
i=0

N Si −
N

3
Ds1 − sidPi

st

=
1

3N
o
i=0

N Si −
N

3
Ds1 − sidfwAsidksl + wBsids1 − ksldg.

s7d

Equation(7) is the central result of this paper: it expresses
the average gainG as a function of the given strategyhsij.
Even though it is an exact and explicit result, the dependence
on these variables is not so simple. In particular the search
for the optimal strategy, leading to maximum gain, will re-
quire some further analysis.

IV. OPTIMAL STRATEGY

The optimal strategy corresponds to the maximum of the
function Gshsijd reached in thesN+1d-dimensional hyper-

TABLE I. Comparison between the optimal and greedy strategy for a small number of players. ForN
=1, 2, 3, 4, 6, 7, 9 the two strategies coincide.

N Optimal strategy Greedy strategy

1 {1, 0}

2 {1, 0, 0}

3 {1, 1, 0, 0}

4 {1, 1, 0, 0, 0}

5 {1, 1, 1, 0, 0, 0} {1, 1, 0, 0, 0, 0}

6 {1, 1, 1, 0, 0, 0, 0}

7 {1, 1, 1, 0, 0, 0, 0, 0}

8 {1, 1, 1, 1, 0, 0, 0, 0, 0} {1, 1, 1, 0, 0, 0, 0, 0, 0}

9 {1, 1, 1, 1, 0, 0, 0, 0, 0, 0}

10 {1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0} {1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0}
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cube with coordinatessi P f0,1g. Even for a moderate num-
ber of players, searching for such a maximum numerically is
an enormous and not always reliable task. In[15], we ob-
tained the optimal strategy forNø5. In Table I, we have
completed the table up toN=10. In all cases we find that the
optimal strategy lies in the corner of the hypercube, with a
first set of values for thesi, with lower index being identical
to 1, followed by the remaining setsi of higher index iden-
tically equal to 0. We will now show that this is an exact and
in fact general result, valid for any number of playersN.
First, we show that the value ofG does not decrease when, at
any point in the hypercube, we replace one of the
coordinates—say,sk—by an appropriate corner valuesk=0
or sk=1. The starting point is the evaluation of the partial
derivatives ofG with respect tosk:

] G

] sk
=

Pk
stFN

2
− k + o

i=0

N

sk − idsifwAsid − wBsidgG
3Ns1 − sA + sBd

. s8d

SincePk
st.0 [cf. Eq. (3)] and 1−sA+sB.0 [see Eq.(5)], the

fact whether the derivative is positive, negative, or zero de-
pends on the expression between square brackets in Eq.
(8)—namely,

gk ;
N

2
− k + o

i=0

N

sk − idsifwAsid − wBsidg. s9d

Furthermore,gk does not depend onsk. Hence, when search-
ing for the maximum ofG by varyingsk, we have only two
possible situations. In the first case,gk=0, implying ]G/]sk
=0 for all values ofsk. The value ofG does not depend onsk
and we can choosesk either 0 or 1. In the other case, the
maximum must be reached on the boundary, with eithersk
=1 whengk.0 or equivalently]G/]sk.0 andsk=0 when
gk,0 or equivalently]G/]k.0. Since the above argument

can be applied, starting from any point in the hypercube, and
repeated iteratively until we reach one of its corners, we
conclude that the maximal value ofG is reached in such a
corner. Note that the same argument holds for locating the
minimum of G (by choosing at each time the corner value
which yield a minimum), which is also reached in a corner of
the hypercube. To proceed to the next step of the proof, we
rewrite thegk as the following linear combination ofg0 and
gN:

gk =
N − k

N
g0 +

k

N
gN = g0 −

k

N
sg0 − gNd. s10d

In the Appendix, we show thatg0.0 and gN,0 for any
strategyhsij. Hence, thegk are strictly decreasing as a func-
tion of k. The optimal strategy is thus of the form

hsijopt = h1,…,1,1,0,0,…,0j. s11d

We give a proof: suppose that the optimal strategy violates
this ordering—say,sk=0—followed by sk+1=1. This would
requiregkø0 with gk+1ù0, in contradiction with the previ-
ous finding.

The above result enormously simplifies the search for the
optimal strategy. Not only does it limit our search to the
corners of thesN+1d-dimensional space(of which their are
2N+1 in total), but we need only to check theN+1 corners
whose coordinates have the special form Eq.(11). In other
words, the time to search increases linearly rather than expo-
nentially in N. This is in contrast with the situation in the
original Parrondo paradox where the search for the optimal
strategy is thought to be anNP-complete problem[14]. Hav-
ing established this fact, we proceed to a numerical search of
the optimal strategy for larger values ofN. The results are
reproduced in Fig. 1, where we plot the valuei* , defined as
the configuration such thatsi =1 for i ø i* and si =0 for i
. i* , as a function ofN. The dependence ofi* on N appears
to have a periodic behavior:i*sNd presents plateaus of size 2,
2, 3, 2, 3 which are repeated, at least up to the valueN
=100. This suggests thati*sNd<s5/12dN for N large, al-
though we have not been able to prove this analytically. The
optimal strategy can now be compared to the so-called
greedy strategy. In this strategy gameB is selected whenever
the total expected gain of the players is positive. Otherwise
one chooses gameA with zero expected gain. From Eq.(6),
we conclude that this strategy has the same form as the op-
timal strategy[cf. Eq. (11)], but with the specific threshold

FIG. 1. Above: gain of the optimal(j) versus greedy strategy
(l) as a function of the number of playersN. The arrows indicate
the limiting value of the gain asN→` for the optimal strategy
(upper arrow) and the greedy strategy(lower arrow). Inset: blowup
for a small number of players. Lower plot: thresholdi* value for
both strategies.

FIG. 2. (a) Schematic representation of the most general super-
stable and fair game with two states. The transitions are indicated
by an arrow, with accompanying jump probabilities(r P f0,1g and
aP f0,1g). (b) Special case with deterministic dynamics.

BRIEF REPORTS PHYSICAL REVIEW E70, 067104(2004)

067104-3



valuei* = bN/3c. The optimal strategy always outperforms the
greedy one, except forN=1, 2, 3, 4, 6, 7, 9, where they
coincide (cf. Table I and Fig. 1). In the limit N→` the
optimal strategy converges to a gain of 1/36<0.027 77,
while the gain for the greedy strategy goes to 1/54
<0.018 51(see the arrows in Fig. 11).

V. DISCUSSION

The above detailed analysis is presumably only possible
for games that possess the property of superstability. For
simplicity we have focused on a case with specific transition
rates, but the above results are representative for the general
case represented in Fig. 2(a). Note that an extreme example
was discussed briefly in[17] [cf. Fig. 2(b)]. In gameA the
player wins with probability 1 when the capital is even and
neither wins nor loses when his capital is odd. For gameB
the rules are the same, but with odd and even interchanged.
This example exhibits the strongest possible Parrondo para-
dox, yet it does not produce the interesting collective fea-
tures discussed here. Indeed, after having played once any
one of the two games, the state(even or odd capital) of all
players will be identical and will remain so forever. In this

sense, the multiplayer features discussed here have a genuine
probabilistic nature, while the Parrondo paradox does not.
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APPENDIX

In this appendix, we show thatg0.0 andgN,0 for any
strategyhs0,s1,… ,sNj. The expression ofg0 is

g0 =
N

2
− o

i=0

N

i sifwAsid − wBsidg. sA1d

The minimal value ofg0 is obtained when the sum on the
right-hand side is maximal. This maximum is obtained for
the strategysi =1 whenwAsid−wBsid.0 andsi =0 otherwise.
From Eq. (2) we have wAsid−wBsid.0 when i . ic
=fN logs4/3d / logs2dg. The minimal value forg0 is then

sg0dmin =
N

2
− o

i=ic+1

N

ifwAsid − wBsidg

= o
i=0

N

i wAsid − o
i=ic+1

N

i wAsid + o
i=ic+1

N

i wBsid

= o
i=0

ic

i wAsid + o
i=ic+1

N

i wBsid . 0. sA2d

Here, we replacedN/2 by oi=0
N i wAsid. By a similar argu-

ment, one finds that the maximal value ofgN is

sgNdmax= o
i=0

ic

si − NdwAsid + o
i=ic+1

N

si − NdwBsid , 0.

sA3d
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1A mean-field calculation predicts a gain equal to 1/36 for both
the optimal and greedy strategies[15]. This erroneous result for the
greedy strategy is understood as follows. The state of the players
after playing gameB is described by a binomial[cf. Eq. (2)]. In the
limit N→`, this distribution converges to ad function centered on
the averagei =N/3. But this value exactly coincides with the thresh-
old for the greedy strategy: i.e., playA if i øN/3 and playB
otherwise. Hence, the Gaussian fluctuations around the average
valueN/3 cannot be ignored, and the probability to select gameA
or B is 1/2 rather than 1 in this case. Note that for any other
strategy, including the optimal one, with threshold strictly between
N/3 andN/2, the problem does not occur, and the mean-field result
holds.
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