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Optimizing strategies in the primary Parrondo paradox
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We calculate analytically the gain for tHé-player primary Parrondo paradox and identify the optimal
strategy.

DOI: 10.1103/PhysRevE.70.067104 PACS nun®)er02.50-r, 05.40-a

I. INTRODUCTION II. PRIMARY PARRONDO PARADOX

Over the last few decades, the concepts and techniques BIetI\?vetgr(? te\,rcl,mg?/ gZ?rzreoercg)j aﬁ?nodx’g:mp;gffrof av:;lhiinoose

statistical phy§ics have.proven yaluable in tackling multivgri—the rules argwins or losses are changes of capital with +1
ate problems in quite different f|(_ald_s of knowledgg including gnq ~1, respective)ythe following.

traffic [1], neural network$2], optimization[3], the immune (i) Game A: With probability 1/4 the player wins or
system[4] and the stockmarkgb,6]. On the other hand, the |oses, and with probability 1/2 his capital does not change.
constructive role of fluctuations in nonequilibrium statistical  (jiy GameB: The rules for gam® depend on the capital
mechanics has been illustrated in various phenomena inclugf the player modulo 2. When the capital is even, the player
ing noise-induced phase transitions, stochastic resonandeas a probability 4/9 to win, 2/9 to lose and 1/3 to neither
Brownian motors and resonant activatigh). Some of these  win nor lose. When his capital is odd, the player has a prob-
phenomena have been translated outside of their originalbility 1/9 to win, 2/9 to lose and 2/3 to neither win nor
physical context. One of them is the Parrondo paradox, statese.

ing that the alternation—random or periodic—between fair The transition probabilities have been chosen in accor-
games needs no longer be a fair ga@k In this paper, we dance with the fact that the games, played separately, are fair.
would like to investigate a multiplayer version of the Par-More importantly, the transition rates are such that the result-
rondo paradox. The interest in this problem is first that ondng stochastic dynamics is superstable: the steady-state prob-
observes counterintuitive phenomena reminiscent of thos@bility distribution to have an even capital—namely, 1/2 for
found in economy and game theory, like the fact that Nastg@meA and 1/3 for gameé8—is reached after playing each
equilibria need not be Pareto optinf@] or that greedy al- ©f these games just once. In other words, the transition ma-
gorithms can lead to suboptimal solutiofis0]. Second, trices asso_uated with the Markovian dynamlcs for each
those phenomena are now observed in models that have93Me aré idempotent operators that project on the steady

physical realizatio{a continuous realization corresponds to I;Ztélsbtjcglznclg]arogr? d I;s\:iaft“gins.chhslisonSI;]Ft)rl:gcgrtiloir:]arll(;}aggg do
a set ofN Brownian particles moving in a periodic asymmet- 9

ric potential that can be flashed on and off at \yi]). Third paradox that appears when switching between the gesaes

and more importantly, the origin of this behavior is of a [15] for more details, but it also allows, as we proceed to

dynamic and more precisely stochastic nature, in contrast t how below, to give a full and deta"ed a_nalyt|c dlscussmn_ of
e much more involved collective version of the game, in-

the static equations in economy and game theory. The final ~ . . e .
reason is the general interest in exactly solvable models(?mdmg the identification of the optimal strategy.
Based on the experience in statistical physics, one can expect

that the exact analy_sis of a stochastiplayer model is Usu- ||| PRIMARY PARRONDO PARADOX WITH STRATEGY

ally out of the question for a generndlvalue. Indeed, for the

original multiplayer Parrondo paradox, results are only The collective version of the game is defined as follows.
known in the limiting cases of a feyN small) or of an A set of N players is allowed to choose, after each game,
infinite number of player§N— ) [12] or by perturbation which game will be played next. Once this choice is made,
analysis around the latter stat@aussian limit [13]. It has  all players will play the selected game, but independently of
even been suggested that the problem of identifying the opsach other. The natural question arises as to which strategy
timal strategy in theN-player game belongs to the class of should be followed to maximize the gain of the players.
NP-complete problemg14]. Our main contribution is to Since the statistics of the gains or losses only depends on the
show that theN-player version of a recently introduced capital modulo 2 of each player and all players are equiva-
simplification—the primary Parrondo paradfis]—can be lent, the relevant information is contained in the number of
analyzed in full analytic detail for any value of. Further- playersi € {0,...,N} with an even capital. There afé+1
more we will show that, for this particular version of the different such configurations. Hence the state of the players
Parrondo paradox, the problem of finding the optimal stratafter the nth game will be described by the probabilities
egy is polynomial rather than exponential in the number ofP;(n) to find the players in these configurationsWe can
players. now define the most general state-dependent strategy by in-
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troducing the probabilities; to choose gam@ (and 1-s; to Sg
choose gameB) when being in state. Introducing wa(j (9= l-si+ss (4)
— 1) andwg(j —1) as the transition probability from configu- "
ration j to i when playing game\ or gameB, respectively, With
the (discrete time evolution ofP;(n) is given by the follow- N N
ing master equation: sn= 2 swall), S5= 3 Swali), (5)
i=0 i=0
N
P(n+1)= > [SWa(j — 1) + (1 =s)wg(j — 1)]P;(n). the average conditional probability to choose gafnehen
j=0 the previous game wak or B, respectively. To complete the

(1) picture, we note that the expected gain after playing game
or gameB when being in configuration is, respectively,

The transition probabilitie(j — i) andwg(j — i) are found ~ given by

as follows. As mentioned before, the probability for a player expected gain for gama=0,

to have an even capital is 1/2 after playing ga#nand 1/3

after gameB. In view of the fact that the games are played 1 N
independently, the probability to havef the players in this expected gain for gami = —(i - _), (6)
state is given by a binomial distribution: 3N\ 3

N where we have divided by the number of playégain per
Wa(j — ) =w,(i) = (N)<}> playen. We conclude that the steady-state average gain for

2 the strategy games is given by
N
: . 1 N
o NN/ 1\i/2\N G({si}):—E(i——)(1-Ss)l:’-st
wi-n=wo="O " @ -5 ) s
i /\3/\3
1&(. N
As a result of the special choice of the transition probabilities = S_NE (i - 5)(1 = §)[Wa(i)(s) +wg(i)(1 —(s)].
of the individual games, the transition rates for the collective i=0
game appearing in E@l) factorize(such a process is called (7)

a Kangaroo process if16]). An immediate consequence is
that the steady-state solutid®'=lim,_..Pj(n) can be ob-
tained explicitly:

Equation(7) is the central result of this paper: it expresses
the average gais as a function of the given stratedg}.
Even though it is an exact and explicit result, the dependence
St_ (1S + We(i) (1 — on these variables is not so simple. In particular the search
PP = Wali)(S) + wg(D)(1 = (), @ for the optimal strategy, leading to maximum gain, will re-

with <s>=EJN:Osj PjSt being the steady-stataveragé probabil- quire some further analysis.

ity that the next game to be played is gafeNote that the
normalization of theP" follows immediately from the nor-
malization ofw,(i) andwg(i); cf. Eqg. (3). The value of(s)
follows from self-consistency: by multiplying E¢3) with s The optimal strategy corresponds to the maximum of the
and summation over, one finds function G({s;}) reached in thegN+1)-dimensional hyper-

IV. OPTIMAL STRATEGY

TABLE |. Comparison between the optimal and greedy strategy for a small number of playend. For
=1, 2, 3, 4, 6, 7, 9 the two strategies coincide.

N Optimal strategy Greedy strategy
1 {1, O}

2 {1,0, 0

3 {1,1,0,0Q

4 {1,1,0,0,0

5 {1,1,1,0,0,0 {1,1,0,0,0,0

6 {1,1,1,0,0,0,9

7 {1,1,1,0,0,0,0,9

8 {1,1,1,1,0,0,0,0,p {1,1,1,0,0,0,0,0,p
9 {1,1,1,1,0,0,0,0, 0,0

10 {1,1,1,1,1,0,0,0,0,0,}0 {1,1,1,1,0,0,0,0,0,0,j0
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FIG. 2. (a) Schematic representation of the most general super-
stable and fair game with two states. The transitions are indicated

. ;*0 by an arrow, with accompanying jump probabilitigsz [0, 1] and
120 a e[0,1]). (b) Special case with deterministic dynamics.
0 can be applied, starting from any point in the hypercube, and

0 20 40 N 60 80 100 repeated iteratively until we reach one of its corners, we
conclude that the maximal value € is reached in such a
FIG. 1. Above: gain of the optimal) versus greedy strategy corner. Note that the same argument holds for locating the
(#) as a function of the number of playeks The arrows indicate  minimum of G (by choosing at each time the corner value
the limiting value of the gain adl—c for the optimal strategy  \yhjch yield a minimun), which is also reached in a corner of
(upper arrow and the greedy stratedgiower arrow. Inset: blowup the hypercube. To proceed to the next step of the proof, we

for a small pumber of players. Lower plot: threshaldvalue for rewrite theg, as the following linear combination af, and
both strategies. O

i i . N -k k k
cube with coordlnatesi e[0,1]. Even for a moderate num- - 9= Jo+ —On=0o— ~(Go— Gn)- (10)
ber of players, searching for such a maximum numerically is N N N

an enormous and not always reliable task[18], we ob- In the Appendix, we show thagy>0 andgy<0 for any

tained the optimal strategy fdd<5. In Table I, we have strategy{s}. Hence, thay, are strictly decreasing as a func-
completed the table up f8=10. In all cases we find that the . i ! k .
tion of k. The optimal strategy is thus of the form

optimal strategy lies in the corner of the hypercube, with a
first set of values for thg;, with lower index being identical {stop=11....,1,1,0,0,..,0}. (11)
to 1, followed by the remaining se&t of higher index iden-
icall I . We will how that this i

tically equal to 0. We will now show that this is an exact andthis ordering—says=0—followed bySe,=1. This would

in fact general result, valid for any number of playéts ) ) . X . .
First, we show that the value & does not decrease when, at "€9UiIr¢gk=0 with gi,,=0, in contradiction with the previ-
' " _ous finding.

any point in the hypercube, we replace one of the N
coordinates—says,—by an appropriate corner valig=0 The above result enormously simplifies the search for the
|optimal strategy. Not only does it limit our search to the

or s.=1. The starting point is the evaluation of the partial . ) . .
dersii(/atives ofG with gregpect 08, P corners of theN+1)-dimensional spacéf which their are
N ' 2N*1in total), but we need only to check thé+1 corners
] whose coordinates have the special form BEd). In other

We give a proof: suppose that the optimal strategy violates

N . . .
P 5~ k+ 2 (k= 1)s[wa(i) —wg(i)] words, the time to search increases linearly rather than expo-
= =0 . (8 nentially in N. This is in contrast with the situation in the
98 3N(1 —sp+sp) original Parrondo paradox where the search for the optimal

SincePS'> 0 [cf. Eq.(3)] and 1-s,+55> 0 [see Eq(5)], the strategy is thought to be awP-complete problenfil4]. Hav-

fact whether the derivative is positive, negative, or zero delNd established this fact, we proceed to a numerical search of

pends on the expression between square brackets in E‘%e optimal strategy for larger values Nf The results are
(8—namely reproduced in Fig. 1, where we plot the valugdefined as

the configuration such thag=1 for i<i" and =0 for i

) ] . >i", as a function oN. The dependence of on N appears
*=5" k+ E (k=1)s[wa(i) = wg(i)]. (9 to have a periodic behavia:(N) presents plateaus of size 2,

=0 2, 3, 2, 3 which are repeated, at least up to the value

Furthermoreg, does not depend og. Hence, when search- =100. This suggests that(N)~(5/12N for N large, al-

ing for the maximum ofG by varyings,, we have only two though we have not been able to prove this analytically. The

possible situations. In the first cagg=0, implying 0G/ds,  optimal strategy can now be compared to the so-called

=0 for all values ofs,. The value ofG does not depend a8y  greedy strategy. In this strategy gaBés selected whenever

and we can chooss, either 0 or 1. In the other case, the the total expected gain of the players is positive. Otherwise

maximum must be reached on the boundary, with either one chooses gamé with zero expected gain. From E¢§),

=1 wheng,>0 or equivalentlydG/ds, >0 ands,=0 when  we conclude that this strategy has the same form as the op-

0x<0 or equivalentlygG/d,>0. Since the above argument timal strategy[cf. Eq. (11)], but with the specific threshold

N
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valuei”=[N/3]. The optimal strategy always outperforms the sense, the multiplayer features discussed here have a genuine
greedy one, except foN=1, 2, 3, 4, 6, 7, 9, where they probabilistic nature, while the Parrondo paradox does not.
coincide (cf. Table | and Fig. L In the limit N—« the

optimal strategy converges to a gain of 1A36.027 77, ACKNOWLEDGMENT

while the gain for the greedy strategy goes to 1/54

~0.018 51(see the arrows in Fig.lj. We acknowledge stimulating discussions with the partici-

pants of the Toledo ESF/STOCHDYN/2004 workshop.

V. DISCUSSION APPENDIX

The above detailed analysis is presumably only possible In this appendix, we show that >0 andgy<O0 for any
for games that possess the property of superstability. Fostrategy{sy,s;,...,S\}- The expression o is
simplicity we have focused on a case with specific transition N
rates, but the above results are representative for the general N S s[wa(i) - wali)] (AL
case represented in Fig(a@® Note that an extreme example Yo= 2 i:OI SiLWA(l) = wa(i)]. )
was discussed briefly ifiL7] [cf. Fig. 2Ab)]. In gameA the
player wins with probability 1 when the capital is even andThe minimal value ofg, is obtained when the sum on the
neither wins nor loses when his capital is odd. For gdne right-hand side is maximal. This maximum is obtained for
the rules are the same, but with odd and even interchangethe strategys =1 whenw,(i) —wg(i) >0 ands;=0 otherwise.
This example exhibits the strongest possible Parrondo par&rom Eq. (2) we have wu(i)—wg(i)>0 when i>i,
dox, yet it does not produce the interesting collective fea=[N log(4/3)/log(2)]. The minimal value foig, is then
tures discussed here. Indeed, after having played once any

d N
one of the two games, the staiven or odd capitalof all N_ov N
players will be identical and will remain so forever. In this (Qo)min = 2 +l'[WA(') w(i)]
—'c
N N N

A mean-field calculation predicts a gain equal to 1/36 for both =2 iwai) = D iwai)+ > i wili)
the optimal and greedy strategid$]. This erroneous result for the i=0 i=igrl =i+l
greedy strategy is understood as follows. The state of the players N

IC
after playing gamé is described by a binomigtf. Eq. (2)]. In the O . . .

limit N— oo, this distribution converges to &function centered on - %' Wa(i) + i:i2+1I wg(i) > 0.
the averagé=N/3. But this value exactly coincides with the thresh- ¢

old for the greedy strategy: i.e., plad if i<N/3 and playB Here, we replacedN/2 by Ei'\ioi wy(i). By a similar argu-
otherwise. Hence, the Gaussian fluctuations around the averagment, one finds that the maximal valuegyf is

value N/3 cannot be ignored, and the probability to select g@&me
or B is 1/2 rather than 1 in this case. Note that for any other ' . ) ) )
strategy, including the optimal one, with threshold strictly between (O max= E (i = N)wp(i) + E (i—N)wg(i) <0.

(A2)

N

N/3 andN/2, the problem does not occur, and the mean-field result =0 =i+l
holds. (A3)
[1] D. Helbing, Rev. Mod. Phys73, 1067(2001). (Springer-Verlag, Berlin, 1991

[2] A. Engel and C. Van den BroeclGtatistical Mechanics of [10] D. Braess, Unternehmensforschufg, 258 (1969.
Learning (Cambridge University Press, Cambridge, England,[11] F. J. Cao, L. Dinis, and J. M. R. Parrondo, Phys. Rev. L&
2001). N _ _ 040603(2004).
[3] M.dMészard,d(\i) F]zrlél,'ant(.if.M.S/-.\. Vlrasorﬁlrg;7elass Theory 1191 B. Cleuren and C. Van den Broeck, Rroceedings of SPIE
and BeyondWorld Scientific, Singapore, . . . .
- . . edited by Z. Gingl, J. M. Sancho, L. Schimansky-Geier, and J.
[4] S. A. Kaufman, The Origins of Order(Oxford University Kertesz(SPIE, Bellingham, 2004 Vol. 5471.

Press, New York, 1993 .

[5] J.-P. Bouchaud and M. PotterSheory of Financial Risks [13] L. Dinis and J. M. R. Parrondo, Europhys. Le#3 319
(Cambridge University Press, Cambridge, England, 2000 (2003. ) ) ) )

[6] R. N. Mantegna and H. E. Stanlen Introduction to Econo- [14] E. Behrends irProceedings of SPIEedited by Z. Gingl, J. M.

physics (Cambridge University Press, Cambridge, England, Sancho, L. Schimansky-Geier, and J. KerteSPIE, Belling-

2000). ham, 2004, Vol. 5471.
[7] Unsolved Problems of Noise and Fluctuatipesiited by D.  [15] B. Cleuren and C. Van den Broeck, Europhys. L&, 151

Abbott and L. Kish(American Institute of Physics, Melville, (2004).

New York, 2000. [16] N. G. Van Kampen,Stochastic Processes in Physics and
[8] G. P. Harmer and D. Abbott, Naturd.ondon) 402 864 Chemistry(North-Holland, Amsterdam, 1981

(1999. [17] G. C. Berresford and A. M. Rockett, Int. J. Math. Math. Sci.
[9] E. van Damme Stability and Perfection of Nash Equilibria 62, 3957(2003.

067104-4



